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result is obtained for N~arge = 220 and Nsmal I = 200 
with 32.5% of the refined sets possessing mean phase 
errors less than 35°: 7.5, 10.0 and 15.0% in the ranges 
0-25, 25-30 and 30-35 ° , respectively. 

The TVAL structure was selected to show the capa- 
bility of the tangent formula (12) to refine random 
phases in the case of a relatively large structure (156 
nonhydrogen atoms in the unit cell). The best result 
was obtained for Nlarg e = 300 and Nsmal ! = 300 ( E H ) =  
1.24). From a total of 200 sets, 12 (6%) show a mean 
phase error between 30 and 35 ° . 

4. Concluding remarks 

The viability of solving crystal structures from the 
direct interpretation of the nonorigin Patterson peaks 
as a function of the phases has been demonstrated. 
This result, however, should not be surprising since 
these peaks contain all the information regarding the 
atomic arrangement in the structure and, in addition, 

the atomicity information contained in the removed 
Patterson origin peak has already been considered in 
the derivation of the Fourier coefficients GH(q0). 

This work was supported by the DGICYT (Project 
PB89-0036). 
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Abstract 

The construction algorithm of the first two papers of 
this series [Fogden & Hyde (1992). Acta Cryst. A48, 
442-451,575-591] is extended to a general treatment 
of triply periodic minimal surfaces (containing as a 
special case the 'regular'  class analysed previously). 
A detailed outline of the parametrization procedure 
for an arbitrary 'irregular' class surface is provided 
and verified via a systematic rederivation of the C(P) 
surface described by Neovius [Bestimmung Zweier 
Speciellen Periodische Minimalfliichen (1883), Hel- 
sinki: Frenckel]. The method is further employed in 
parametrizing various empirically generated surfaces. 

I. Introduction 

Paper I of this series (Fogden & Hyde, 1992a) outlines 
the mathematical foundation of this study, in extend- 
ing the local representation of a general minimal 
surface, due to Weierstrass, to a rigorous connection 
between infinite (triply) periodic minimal surfaces 

(IPMS) and the finite-sheeted Riemann surface of 
their algebraic complex Weierstrass functions. Topo- 
logical considerations impose simple conditions relat- 
ing the fundamental  global characteristic of the I PMS 
- the genus - to the two principal global features of 
the Riemann surface - the total branch point order 
and number of sheets. Considerations of differential 
geometry local to the degenerate points of the IPMS 
(the 'flat' points, at which the Gaussian curvature is 
zero) constrain the Riemann surface structure to be 
local to the corresponding branch points. The local 
and global aspects are then coupled by the symmetries 
of the IPMS - the plane lines of curvature, linear 
asymptotes and rotational invariances - which reduce 
to Weierstrass functional relations. In summary, the 
specifying properties of an IPMS are readily trans- 
lated into those of the Riemann surface, making the 
latter a natural and extremely useful means of describ- 
ing the former. 

The remainder of papers I and II of this series 
(Fogden & Hyde, 1992a, b) deals with a special subset 
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of IPMS, the 'regular' class, for which each fiat point 
has normal vector coincident only with those of other 
fiat points possessing identical surface degeneracy. 
This corresponds to the simplest class of Riemann 
surfaces, permitting the above relationship to be har- 
nessed in determining all possible 'regular' IPMS via 
enumeration of all possible Riemann surface struc- 
tures. The resulting exhaustive listing of regular-class 
solutions is summarized in paper II. This list contains 
many of the low-genus/high-symmetry IPMS (such 
as the D, P and I-WP surfaces) postulated as 
modelling the underlying structures observed in a 
variety of molecular self-assemblies, e.g. aggregates 
in binary surfactant/water mixtures (Fontell, 1990). 
Recently, IPMS of more intricate topology, residing 
outside the 'regular' class, have been proposed as a 
description of phases exhibited in particular systems 
(Landh, 1992). In tandem with this development, a 
large number of new 'irregular' IPMS have been 
isolated, principally by the crystallographic methods 
of Fischer & Koch (1987, 1989) and Koch & Fischer 
(1988, 1989, 1990). Thus, the problem of parametriz- 
ing 'irregular' IPMS, dating back to Schwarz, is at 
present motivated by the experimentalists' need for 
precise mathematical definitions to accompany the 
expanding vocabulary of IPMS and hence permit the 
quantitative classification of observed structures. This 
problem is addressed in this study. Since much is 
borrowed from, and is a direct extension of, papers 
I and II, (Fogden & Hyde, 1992a, b) equations or 
tables of these papers will be indicated with I and II, 
respectively, to avoid unnecessary repetition. 

2. Global and local constraints 

Recall that the Gauss-map image of the fundamental 
unit of an IPMS is an s-fold covering of the unit 
sphere and hence of the complex to plane on stereo- 
graphic projection, representing the Riemann surface 
of the Weierstrass function R(to). Thus the (alge- 
braic) Weierstrass function is the solution R = R (to) 
of an sth-degree polynomial equation (I3), 

aM(to)RM : 0, (1) 
M = O  

for some set of polynomials {aM(to)}~=o. The 
requirements of topology and differential geometry 
in the large [outlined in (I6)-(I9)] relate the genus 
g of an orientable IPMS to the corresponding number 
of sheets s of the Riemann surface via 

g = s + l  (2) 

and specify the total branch-point order W of the 
Riemann surface, 

W=4s .  (3) 

tO n Let { ~}i=1 denote the set of distinct fiat-point nor- 
mal-vector images of the IPMS fundamental unit. The 

number of surface points on the unit with common 
normal-vector image w~ is equal to the generic value 
s if the multiplicity of the local Gauss-map degree is 
included. Equivalently, on the Riemann surface 
above w~, the Weierstrass-function value correspond- 
ing to a fiat point of degree b + 1 is represented by a 
branch point (of order b) pinning b + 1 sheets there. 
In general, the points of the IPMS unit sharing this 
fiat-point normal vector may possess differing Gauss- 
map degrees. Let the set {N0, b0}~%_ o represent the 
spectrum of branch points lying above w~ on the s 
sheets of the Riemann surface. Here, N o > 0 denotes 
the number of such branch points of order b o > 0 for 
j = 1 , . . . ,  ni. By convention, b~0 = 0, so Nm-> 0 is the 
number of sheets unbranched above to~. Hence, on 
summation, 

tli 

2 No(bo+l )=s ,  (4) 
j = 0  

and the total branch-point order of the Riemann 
surface is 

~, tli 

W =  Wi, W~= E Nobo, (5) 
i=1 j = l  

so (3) implies 
tli 

Wi = ~ ~, Nobo = 4S. (6) 
i=1 i = l j = l  

In the special case of the regular class, ni = 1, bi~ = b~ 
and Nio=0, which imply N , =  s/(b~+ l), so (6) 
recovers (I10) and, in particular, is no longer 
explicitly dependent upon s (i.e. upon the IPMS 
topology). 

At a branch point of order b 0 above toi, (I2) implies 
that the corresponding Weierstrass-function value is 
infinite. Furthermore, local to to~, the divergent 
asymptotic forms of the b 0 + 1 branches of the Weier- 
strass function pinned there are given by the b 0 + 1 
roots of the relation 

R(to)%+l-ro(to- to , )  -%, to- to ,  (7) 

for some complex constant r o and some positive 
integer a 0 coprime to b 0 + 1. This a 0 is, in turn, related 
to b o via considerations of local differential geometry. 
Indeed, in Appendix A we prove that the two numbers 
coincide for any IPMS. Thus, from (7), 

R(to) - ' yo( to- to , )  -%/(b''÷1), to- to ,  (8) 

[where Y0 are the b 0 + 1 roots of ro], a result estab- 
lished in paper I for the regular class only. 

Hence our previous analysis provides the founda- 
tion for the present study, as a general IPMS recovers 
the regular-class Weierstrass functional form (to- 
gether with its implications regarding local surface 
symmetries) in the vicinity of a branch point. In 
particular, the asymptotic methods in the Appendix 
of paper I may now be extended to the general case. 
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As before, the polynomials aM (tO) in (1) are expressed 
for convenience as 

aM(to)=aMpM(to)  f i  (to_to,)qM,, (9) 
i = l  

where qMi >-0, PM(OJi) ~ 0 and as and ao are non-zero 
constants. The zeros of R(o~) are given by the zeros 
of the polynomial ao(w), so, since the requirement 
of pointwise-finite Gaussian curvature implies via 
(I2) that R(to) is non-zero on C, we have ao(oJ) -- ao. 
Similarly, the points in C above which the Riemann 
surface is branched are precisely the zeros of the 
polynomial as(o~), hence Ps(to) -= 1. Furthermore, the 
order of the zero of a~(to) at toi is given by the 
branch-point order W~ of the Riemann surface over 
this point. Thus, from (5), 

tl i 

q~, = ~ Nijb,j. ( 1 O) 
j = l  

Note that (6) then implies that the degree of the 
polynomial as(tO) is 4s. 

The case in which only the leading and zeroth terms 
a~(to) and ao(tO) in (1) are present yields the regular 
class of IPMS analysed previously. For an 'irregular' 
IPMS, intermediate terms a~_~(tO),..., a~(tO) are 
present. Asymptotic constraints can then be utilized 
in determining the set {deg PM, {qM~}~'=~}~L1 (where 
deg PM denotes the degree of the polynomial PM) 
characterizing the structure of the intermediate terms. 
These constraints, resulting from the requirement that 
the s roots R(to) of the polynomial equation (1) 
recover the regular-class form in the special limits, 
yield a system of equalities and inequalities in the 
unknowns deg PM and qM~- Some of the conditions 
may be satisfied trivially and provide no information. 
Others may lead to inconsistencies regarding a par- 
ticular value of deg PM or qMi, implying that the 
corresponding coefficient aM must be set to zero and 
hence that the Mth  term cannot be present in (1). 
The derivation of the constraints is detailed in Appen- 
dix B. 

3. Symmetry constraints 

The preceding asymptotic analysis yields no direct 
information regarding the complex numbers specify- 
ing the polynomials via (9), namely the constant 
coefficients {aM}~=o, the branch-point positions 

n r 1 deg PM {toi}i=~, and the zeros ~ttoM~i=~ of the polynomials 
P M ( M =  I , . . . , s - 1 ) ,  

degP M 

PM(to) = I-I (to-toMi). (11) 
i = l  

The qualitative nature of these parameters is obtained 
by addressing the symmetries of the IPMS, in par- 
ticular, the plane lines of curvature, linear asymptotes 
and rotation and roto-inversion symmetries. 

( a ) Plane lines o f  curvature and linear asymptotes 

A general analysis of plane lines of curvature and 
linear asymptotes on IPMS was presented in § 5 of 
paper I. It was shown that the conditions for the 
existence of these special curves (representing mirror 
planes and twofold axes, respectively) reduce to 
Weierstrass functional equations. The constraints on 
the unknown parameters in order that the defining 
equation (1) satisfies these relations are straightfor- 
ward generalizations of the corresponding regular- 
class results and are summarized here. 

For the representation (I1), the condition (I16) for 
a segment of the real axis Im to = 0 to be the image 
of a line of curvature in the xz plane or an asymptote 
along the y axis is equivalent to (I17) and hence, on 
substitution of (1), to the identical condition 

aM (o3) = (+ 1)M~-~-~ (to) (12) 

for each coefficient polynomial (where the plus and 
minus signs refer to plane lines of curvature and linear 
asymptotes, respectively). This, in turn, implies from 
(9) and (11) that the sets of polynomial zeros are 
conjugate invariant 

{~//} = {tO/}, q M i  constant 

and 
..-X"--/deg PM / t o  ldeg  PM 
W M i J i = l  : I. M i J i = l  , (13) 

and that the constants aM satisfy 

aM = (+I)MaM ' (14) 

(and are hence either real or imaginary). 
In general, the surface possesses a line of curvature. 

in a plane with normal fi = (n~, n2, n3) or an asymptote 
directed along its normal line if it satisfies the sym- 
metry conditions, given by (I19), (I20) and (I22), 
with respect to the segment of the corresponding circle 
image [n3to + (n 1 q- in2)l = 1 (for n 3 ya 0) in the complex 
plane. The form (1) is consistent with the associated 
functional equation (I23) if the coefficient poly- 
nomials have the property 

aM(t3) = (-+-l )M[ n3t3 + ( nl + in2)]  4M 

x a~-( [ - (n l  + in2)to + n3] 

x [ n 3 w + ( n ~ - i n 2 ) ] - l ) .  (15) 

This demands that the sets of polynomial zeros are 
invariant on reflection in the image circle or, 
equivalently, 

{ [ - - (  n I -I-- i n 2 ) ~  i q-  n3] / [ /1303  i q- ( n l -  i n 2 ) ] }  --- { to/},  

qMi constant 

and 

{[- (n l  + in2)-~-~Mi + n3]/[ n3-~-~Mi + ( n~ - in2)]}d~PM 
t / deg PM 

- -  I t o M i . ~  i = l  (16) 
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and that the number of such zeros [the degree of 
aM(tO)] is 4M, that is, 

deg PM + ~ qM, = 4M. (17) 
i = l  

Furthermore, the arguments of the complex constants 
aM are specified by the additional constraint 

a M - - ( + l )  M fl  [n3tO,+(n,+in2)] qM' 
i = l  

deg PM 

x 1-I [n3tOMi+(n,+in2)]fM. 
i = 1  

(18) 

For the case of a branch point at infinity, say to, = ~ ,  
the condition (16) still applies to the set of n - 2 finite 
branch points, say to2,. • •, tO,-~, permuted on reflec- 
tion. It further applies to all n branch points if, with 
tO~=-(1/n3)(n~+ in2) denoting the circle centre 
(imaged at infinity on reflection), we define qM, = 
qM~- With this definition, (17) is unchanged and now 
implies that the degree of aM(tO) is 4M - qM~ (or 4M 
if counted with the suppressed zero of order qM~ at 
infinity). In condition (18), the range of the first 
product is now restricted to the finite non-zero terms 
represented by i = 2 , . . . ,  n - 1 .  

In the special case n 3 = 0 ,  the generic image circle 
is now a ray through the origin at angle ~0 from the 
real axis such that exp (@) = n2+ in~. With n 3 = 0 in 
(15), the corresponding rotated plane intersects the 
surface in a line of curvature or possesses a normal 
line coincident with a surface asymptote only if the 
ray defines a reflection axis of the polynomial zero sets 

{exp (@)tOi} = {exp (@)tOi}, qMi constant 

and 

(,~o)~oMi}i=, = {exp (Z~0)OJM, t,=, ~ (19) {exp " d e g P M  • \ ~ d e g P .  

(where the point tO. = oo is invariant on ray reflection) 
and the constant-coefficient arguments satisfy the 
relation 

n - I  

a M = ( + l )  M exp [i2~p(deg PM + ~ qM,--2M)]fM.  
i = l  

(20) 

( b ) Rotation and roto-inversion symmetries 

The Weierstrass functional equations necessary for 
the IPMS to exhibit a rotational symmetry angle of 
~o' about the z axis (or roto-inversional symmetry on 
composition with inversion in the origin) were sum- 
marized in § l (b)  of paper II. For brevity, we restrict 
attention here to the on-surface symmetries. The sur- 
face is invariant on rotation (positive sign) or roto- 

inversion (negative sign) about the normal vector 
(projected to infinity in the complex plane) of a point 
(situated at the origin) provided 

exp (-i2q~')R(exp (-iq~')to)= +R(to). (21) 

After substitution of this condition into (1), the cor- 
responding condition in the polynomials aM (tO) then 
implies that the zero sets are invariant under this 
rotation, 

{exp (i~p')to~} = {toi}, qM~ constant 

and 

{exp (" " ~degP. , ~dege. (22) 
l~O } t o M i ~  i = l  "~ = ~ t t o M i ~  i = l  ~a 

(with the point to. = ~ again fixed), and that, for each 
M = 0 , . . . ,  s, 

[( )] (+1) Mexp @' d e g P M +  ~ qM~--2M =1 
i = 1  

(or a M = 0 ) .  (23) 

The set of equations (12)-(23) consider IPMS sym- 
metry with respect to the complex plane representing 
the superposition of all s sheets of the Riemann 
surface. They relate the existence of surface sym- 
metries to properties of the coefficient polynomials 
in the defining equation (1). In particular, each poly- 
nomial zero set {to,}i=~, { l d e g P .  " toMi~=~ ~ (counted with 
their multiplicities) must exhibit the associated sym- 
metry in the complex plane. Furthermore, the nature 
of each constant coefficient aM is determined (i.e. 
those which are zero are isolated and the argument 
of the non-zero values is specified). Hence, the analy- 
sis yields necessary conditions for the IPMS symmetry 
to be manifested on a particular number of sheets of 
the Riemann surface lying above the image in the 
complex plane. However, as opposed to the situation 
for the regular class, (1) cannot in general be inverted 
to obtain explicit expressions for the s branches of 
the Weierstrass function R = R(to). Thus, from the 
above it is not possible to infer directly the global 
symmetry structure of the general Riemann surface, 
such as that performed in paper II. 

4. Spherical geodesic tessellating polygons 

From the discussion in paper I, the Fliichenstiick (or 
surface element) of an IPMS has as Gauss-map image 
a spherical geodesic polygon on the Riemann surface, 
the edges of which are the images of plane lines of 
curvature and /o r  linear asymptotes for the 0 = 0 (or 
0 = rr/2) member of the Bonnet associate family. 
Repeated reflection and /o r  rotation of the Fliichen- 
stiick over these bounding curves generates the funda- 
mental unit of the IPMS and, accordingly, reflection 
of the polygon in the corresponding edges results in 
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a tessellation of the s-sheeted Riemann surface over 
the sphere. On the projected spherical polygon unit 
there must therefore exist zeros (counted with their 
multiplicities) of each aM(to) such that, under this 
group of reflection operations, the polynomials 
defined by the complete set of zeros satisfy the con- 
straints derived above. 

Any such tessellating spherical geodesic polygon 
may be constructed from an underlying Schwarz tri- 
angular tiling, of a particular number of copies of the 
unit sphere, as a finite union of the triangles. The 
regular-class restriction that only branch points of 
the same order are superposed on the Riemann sur- 
face having been dispensed with, the underlying basis 
is now extended to all 15 Schwarz cases (Erd61yi, 
Magnus, Oberhettinger & Tricomi, 1953) and the 
constraint that the branch-point distributions must 
be identical on each underlying Schwarz tile of the 
Riemann surface is now relaxed. Hence, the zeros of 
each aM(to) allocated to the polygon unit can only 
be propagated to the entire Riemann surface by reflec- 
tion across the underlying tile edges defining the 
polygon boundary: in general, no symmetry oper- 
ations exist internal to the polygon relating the distri- 
bution on each constituent tile. However, with respect 
to superposition of the s-sheeted Riemann surface 
onto the complex plane, the complete distribution of 
zeros is necessarily symmetric on reflection across all 
underlying tile edges. Thus, each coefficient poly- 
nomial aM(to) may be expressed as some product of 
symmetric polynomial forms specific only to the par- 
ticular Schwarz tiling employed. 

In this way, the symmetry conditions derived above 
. , ~dcgp~, of each regarding the zero sets {to;}i--l, l t o M i ] i = l  

aM(to) are an obvious requirement for consistency 
with the underlying tiling. The determination of the 
aM(o) then reduces to the appropriate choice of the 
symmetric polynomial forms comprising them. Fur- 
thermore, a given Schwarz tiling admits of a limited 
number of basic such forms only, classified by their 
degrees, thus facilitating enumeration of the finite set 
of possibilities meeting the constraints on the 
unknowns deg PM and {qMi}in=! formulated earlier. A 
general discussion of the symmetric polynomial forms 
associated with a Schwarz tiling is presented in 
Appendix C. 

The introduction of the underlying Schwarz tiling 
similarly permits the enumeration of all IPMS. In 
paper I, this was achieved for the regular class by 
expressing the global Riemann-surface constraint (3) 
as an equation [(137)] relating the orders of the 

,~. 3 branch points assigned to the vertices { jTr}j=~, edges 
and face of a single triangle. To generalize this, sup- 
pose that the polygon unit is the union of t triangles 

ib,, ~N" and let {bpj}]=l, {b'pk}ff~l and 1 p,Sl=l denote the 
orders of the branch points residing at the three 
vertices and on the edges and face, respectively, of 
the pth constituent triangle. Then, application of the 

Gauss-Bonnet theorem to the tessellation implies 

j = l  p = l  

! ! 
+ Y'. ( l / t )  bpk/(bpk+l) 

k = l  p = l  

+2 ( l / t )  ~,,,/:~.,, +1) =A,  (24) U p l /  \ U pl 
I= l  p = l  

where A is defined in (135) and the regular-class result 
(137) is the special case t = 1. 

A systematic derivation of all IPMS generated by 
a particular Schwarz tessellation demands solution 
of (24) for the set of possible orders of the branch- 
point distribution on the polygon unit. For the 
irregular class of IPMS, this equation depends 
explicitly on the number of underlying tiles t compris- 
ing the polygon [or, equivalently, (6) possesses an 
explicit s dependence]. Hence, (24) generates an 
infinity of IPMS candidates as t (and hence s) is 
increased without bound. For surfaces with a par- 
ticular genus, this equation, in conjunction with 
supplementary necessary conditions, is an extremely 
useful tool for listing the finite set of possibilities. 

5. Discriminant of the polynomial equation 

To recapitulate the parametrization procedure to this 
stage, assume that, for a given IPMS, the Fliichenstiick 
is isolated and the nature of its Gauss-map image is 
established with respect to the corresponding under- 
lying Schwarz tiling. From this, the basic structure of 
the entire Riemann surface tessellated by it is readily 
inferred. In particular, the nature of the flat-point 
images {toi} i~1 and the associated sets {Nu, bu}j"=o are 
known. The preceding analysis then determines the 
types of symmetric form defining each coefficient 
polynomial aM(to) in (1). The polynomials are then 
specified up to a number of real parameters: any 
degrees of freedom present in the symmetric forms 
(i.e. the yj in Appendix C), together with the constant 
coefficients aM in (9) (effectively real quantities since 
their complex arguments are fixed by the symmetry 
conditions in § 3). The calculation of these final 
unknowns employs the remaining special feature of 
the Weierstrass function - its discriminant. 

The most important characteristic of an algebraic 
function, defined by some polynomial equation (1), 
is the set of points to that yield less than the generic 
number s of distinct function values R(to). This 
includes the zeros of the leading coefficient poly- 
nomial as(to), above which sheets of the Riemann 
surface are pinned at branch points. These are the 
flat-point images of the IPMS with Weierstrass func- 
tion R(to) and have been analysed above. The second 
type of special point, above which the function values 
coincide on some numbers of sheets of the Riemann 
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surface that are not pinned together there, are the 
zeros of the discriminant of the polynomial equation 
(1). With respect to an IPMS, this implies that, for a 
surface-normal vector corresponding in projection to 
a discriminant-zero to, the set of s points on a funda- 
mental unit possessing this common normal vector 
contains some number of distinct points with identical 
Weierstrass-function value R(to). Now, from the 
Weierstrass representation (I1), two surface points 
with identical value of to and R(to) are locally indis- 
tinguishable in the context of the IPMS so they rep- 
resent a degeneracy of the representation (which is 
only uniquely defined up to a rigid translation). 

Surface normals corresponding to these dis- 
criminant zeros may be isolated via the symmetries 
of the Gauss-map image. Specifically, discriminant 
zeros occur at points of the underlying Schwarz tiling 
at which the angle subtended by the basic polygon 
unit (Fliichenstiick image) exceeds that of the Schwarz 
triangle. Furthermore, the particular nature of the 
degeneracy there is simply related to the ratio of these 
two angles. If it is required that the polynomial 
equation (1) evaluated at these points displays this 
degeneracy then this supplies additional equations 
necessary in determining the excess parameters 
remaining in the parametrization. 

6. Parametrization of specific 'irregular' IPMS 

To illustrate the parametrization method, IPMS with 
a variety of genera (and hence number of sheets in 
the Riemann surface) are considered. The symmetries 
of these IPMS relate to the underlying tilings given 
by Schwarz cases 1 and 4, for which the symmetric 
polynomial forms are detailed in Appendix C. The 
ensuing examples also require the formula for the 
discriminant D of a quadratic, cubic and quartic 
polynomial equation. For the equation 

d 
2 ~Od_ rn z rn = O, 

m=o 

the general discriminant formula gives 

d =2:  D 2 = - -  ~00(~01 -- 4 ~ 0 ~ 2 ) ;  

d = 3 "  D=~oo(4~oq~ 3 -  2 2 q~ lq~2 + 4~o3 q~3 + 27 q~q~ 

-- 18 ~POq~l~P2q~3) ; 

d = 4 :  D = ( -  1/27) ~Oo[(27q~2¢4 + 27q~oq~32 - 9q~,q~2q~3 

-- 72q~oq~2q~ 4 + 2~03) 2 

+ 4(3 ¢~ ~o3 - 12~poq~4 - q~2)3]. (25) 

The prefactor ~Oo in these formulae represents the 
trivial discriminant zeros due to the pinning of sheets 
at the branch points (the zeros of q~0). The bracketed 
term then yields non-trivial discriminant zeros, at 
which the function value coincides on sheets that are 
not connected there. 

(a) The C(P) surface 

To illustrate the application of the construction 
algorithm, we use it to rederive the Weierstrass func- 
tion of the C(P) surface, obtained by Neovius (1883) 
via a different and less generalizable analytic 
approach. For this IPMS, illustrated in Figs. 3(a) and 
4(a) - (c )  of the technical report by Schoen (1970), 
the Gauss-map image of the Fliichenstiick is given 
here in Fig. 1 with respect to the underlying Schwarz 
case 4 tiling. Here, the numbers indicate the orders 
of the flat-point images of the Fliichenstiick and 
the edges labelled p and l denote the images of 
the bounding plane-line-of-curvature and linear- 
asymptote segments. 

It can be checked that this polygon unit, comprising 
four underlying triangles, satisfies the necessary con- 
dition (24). The set of orders of the branch points, 
residing here only at vertices [where (A1, A2, A3)rr = 
(41-, 5 ,  1 )  7/ ' ] ,  i s  4 3 ((b~j}p=,L=, = ((2, 2, 2, 0}, (1,0, o, 0}, 
{0, 0, 0, 0}}, which on substitution into the equation 

1 renders both sides equal to g, as required. The 
minimum number of these polygons required to 
tessellate a (multiple) covering of the unit sphere is 
the number of distinct polygon positions with respect 
to the underlying tiling. Now there are six 7r/4 vertices 
of the tiling, each of which offers eight distinct posi- 
tions for the single rr/4 vertex of the polygon, giving 
in total 48 distinct configurations. As this is the case 
for all three vertex types, there are 48 distinct polygon 
positions and the unit thus tessellates four sheets. 

The genus g of the C(P) surface is 9, hence (2) 
implies that the Riemann surface of the Weierstrass 
function possesses s = 8 sheets, comprising two iden- 
tical copies of the four-sheeted polygon tessellation. 

m 

Fig. 1. Stereographic projection of the Schwarz case 4 tiling of the 
unit sphere, bearing the Gauss-map image (shaded region) of 
the C(P) surface Fliichenstiicla The Fliichenstiick is delimited by 
a pair of plane lines of curvature and a linear asymptote,  with 
the edges marked with symbols 'p '  and '/ ' , respectively. The 
small filled circles • denote the sites of flat points on the image; 
the assigned numerals give their order (a convention used 
throughout  Figs. 1-5). 
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The two identical copies are indicative of the on- 
surface centres of inversion at the flat points corre- 
sponding to the first-order branch points, as the 
necessary requirement that ~o' = 0 satisfies the negative 
root of (21) implies, via (23), that aM = 0  if M is 
odd. Hence, with only the even-power terms M =  
0,2,4 ,6 ,  8 present, the polynomial equation (1) 
becomes a quartic in R 2, where the four +R branch 
pairs of the Weierstrass function correspond to the 
four pairs of identically tessellated sheets. 

Now consider the Riemann-surface structure above 
the branched points of the Riemann surface, given 
by the polygon tessellation. On the eight sheets over 
each zr/4 vertex of the underlying tiling, there exist 
three sheets pinned at a second-order branch point 
(exhausting the eight possible polygon positions with 
the 37r/4 vertex at this site), together with three identi- 
cally tessellated sheets pinned at a second such branch 
point (corresponding to the negated branches of the 
former) and an identically tessellated unbranched 
pair (each of which exhausts the eight positions with 
the zr/4 vertex of the polygon situated there). Over 
each zr/3 vertex of the tiling an identical pair is pinned 
at a first-order branch point (each spanned by the six 
configurations with the zr/3 vertex of the polygon 
there) together with three identical unbranched pairs 
(representing the three possible orientations of the 
polygon edge at this underlying tiling vertex). 

If the eight zr/3 vertices and the six 7r/4 vertices 
of the underlying tiling (given in Appendix C) are 
denoted by {to~}~s= 1 and {toi}~49, respectively (where 
to14 = oo), the complete set of flat-point normal-vector 

{to,},=1 images is 14 8 Uj ' to  1.14 ={to~}i=l t .~=9. Then the set 
{No, 1 bu}j=o of number N u of branch points of each 
order b~j-> 0 on the eight-sheeted Riemann surface 
above to~ is {{6,0},{1, 1}} for all i = 1 , . . . , 8  and 
{{2, 0}, {2, 2}} for i = 9 , . . . ,  14. We first determine the 
unknown parameters deg PM and {qM~}~31 (for M 
even) for which, by virtue of the underlying tiling 
symmetry, qMi is identical for each i = 1 , . . . ,  8 and 
each i = 9 , . . . ,  13. The constraints (10), (B2)-(B4),  
(B8)-(B10), (B17)-(B19) and (B21)-(B23) supply 
the information 

qsi = 1, q6i = 0, i = 1 , . . . ,  8; 

qsi = 4, q6i >- 3, q4i >" 2, 

q2i=0, i = 9 , . . . , 1 3 ;  

13 13 
deg P6 + )-'. q6i_<21, degP4+ ~ q4~-<14, 

i=1 i=1 

13 
deg P2 + ~., q2i=8. 

i=1 

(26) 

The necessary condition (17) for the edges of the 
underlying Schwarz triangles to be the images of plane 
lines of curvature and/or  linear asymptotes further 

implies 

14 14 
deg P6 + ~ q6i = 24,  d e g  P4k- ~ q4i-- 16, (27) 

i=1 i=1 

where we define the order at infinity qM,14 = qMi, i = 
9 , . . . ,  13. Hence, from (9) and (C8), we have 

as(to) = a8p4p2, ao(tO) = ao, 

a6(to) = 0~6 P6(to )p q~.9, 
(28) 

a4(to ) = ot4P4(to )p%gp~'.', 

a2( to ) = a2P2( to )pq2. ', 

subject to the constraints 

deg P6+ 6q6,9 = 24: q6,9_> 3; 

deg P4+8q4 j+6q4 ,9  = 16: q4,9--> 2; (29) 

deg P2+ 8q2.1 = 8. 

Also, as each PM(to) is a symmetric polynomial with 
respect to the Schwarz case 4 tiling, if PM(to) is 
non-constant, then, with PM(toi)~0 by definition, 
deg PM must be some multiple of 12. Equations (29) 
then imply that P6 ~ 1, q6,9----4 and P 2 - 1 ,  q2.1----1, 
while the equation for a4(to) has no integral solutions 
consistent with the constraints and hence this term 
cannot be present, i.e. a4 = 0. In summary, the poly- 
nomial equation (1) for the C(P)-surface Weierstrass 
function has the form 

a s p 4 p 2 g S + o t 6 p 4 R 6 + o t 2 p 2 g 2 + o t o = O .  (30) 

From (14), the constant coefficients aM are real 
since a segment of the real axis is a plane-line-of- 
curvature image. Accordingly, two of these values are 
arbitrary via the homogeneity of (30) and the choice 
of scaling of the Weierstrass function, i.e. the Car- 
tesian coordinate units. Considerations of the poly- 
nomial discriminant, as discussed in § 5, yield two 
homogeneous relations in the coefficients, thus 
specifying the C(P) surface completely. 

In particular, consider the Riemann-surface struc- 
ture above any one of the twelve zr/2 vertices of the 
underlying tiling. On the four pairs of identically 
tessellated sheets, the coverings of this vertex corre- 
spond to the four possible positions of the polygon 
pair with common edge containing the point. These 
four positions are of two distinct types, generated by 
the two zr/2 vertices of the underlying tiling residing 
on the boundary in Fig. 1. Each of these two types 
gives two coverings, related by reflection in the under- 
lying tile edge intersecting the polygon edge at the 
zr/2 vertex under consideration. Hence, under the 
pair of reflection operations yielding the four poly- 
gons constituting the two coverings of this type, the 
7r/2 vertex is the only fixed point and the coverings 
are locally indistinguishable there. Consequently, the 
Weierstrass-function values on these two sheets 



416 PARAMETRIZATION OF TRIPLY PERIODIC MINIMAL SURFACES. III 

(unbranched) above this vertex are equal. The dis- 
criminant of (30) is thus zero at the twelve zr/2 vertex 
images of the underlying tiling; more specifically, this 
equation must yield a pair of repeated roots of R 2 
there. 

On substitution of the 7r/2 vertex positions to = 
exp (i7r/4) exp (imTr/2) (m ~ 7/) into (C8) and (30), 
this implies that there exist numbers a, b and c such 
that 

192asR 8 -  1 6 a 6  R 6 - 1 2 a 2 R 2 +  ce 0 = ( a R 4 +  b R 2 +  c)  2 

and thus, for consistency, that 

01~20/6 = --80~00~8, ~00g 2 = 108a8 a2. (31) 

These are the pair of homogeneous relations complet- 
ing the parametrization of the C(P) surface. One may 
trivially check that, on substitution of the coefficient 
polynomials of (30) into the quartic discriminant 
formula (25), the relations (31) imply via (C2) that 

D ,,., 4 3 4 9 4 
= - - z l o t 2 0 t s p l p 2 p  3 . 

Thus, with the degenerate prefactors ignored, the 7r/2 
vertex images are the only non-trivial zeros of the 
discriminant. 

One of the class of solutions of (31), which are all 
equivalent up to scaling, is as =~, a6 = - 4 ,  a2 = 2, 
ao = 1. Accordingly, the Weierstrass function of the 
C(P) surface is the solution set R = R(to) of 

I 4 ,-.8 4 p ~ R 6 + ~ p 2 R 2  + 1 0 ( 3 2 )  ~ p l p 2 ~  = 

[where Pa and P2 are given in (C8)], which recovers 
the result of Neovius (1883). The explicit solution of 
(32) may be obtained via the standard quartic root 
formula and simplified using the compact dis- 
criminant expression above. 

(b) The H ' - T  surface 

Having illustrated the validity and practicality of 
the method, we employ it to parametrize the H'-T 
surface proposed by Schoen and modelled in Fig. 13 
of his report (Schoen, 1970). The Gauss-map image 
of the H'-T Fliichenstiick (bounded entirely by mirror 
planes) is given here, with reference to the Schwarz 
case 1 n = 6 tiling, in Fig. 2. This polygon, comprising 
three underlying Schwarz triangles, contains only a 
single first-order branch point, lying on a triangle 

H b, l 3 /1 edge, so that the set l l  p k J p = l l k = l  = {1, 1, 0} is a solu- 
tion of (24). Repeated reflection in the bounding 
edges generates 24 distinct polygon positions tessel- 
lating a triple covering of the unit sphere and hence 
the three-sheeted Riemann surface, since the H'-T 
surface genus g - - 4  (Schoen, 1970) implies s = 3 .  
Analysis of the branched structure of the Riemann 
surface reveals that the underlying triangle edges lying 
along the alternate rays arg to = (2m + 1)7r/6 are each 
covered twice by a pair of polygons related by reflec- 
tion in the edge, on which the boundary wraps around 

the branch point pinning the two sheets there, and 
once by the two polygons sharing an unbranched 
boundary segment coinciding with this edge. 

The set of 12 fiat-point normal-vector images 
comprises {w,}~z=l={{A, 1 /A}exp[ i (2m+l)Tr /6]} ,  
where 0 < A < I ,  with the corresponding sets 
{Nu, bij})= o given by {{1,0},{1,1}} for each i=  
1 , . . . ,  12. The constraints (10), (B2)-(B4),  (B8)-  
(B10) and (B13)-(B14) of asymptotics demand that 
deg PM and qMi (identical for each i =  1 , . . . ,  12) 
satisfy 

q3i = 1, q2i-> 1, qli = 0, i = 1 , . . . ,  12, 

12 
deg P2+ ~ q2i-<8, deg P~<-4, 

i=1 

and the necessary condition (17) implies that these 
last two constraints are strict equalities. The two con- 
ditions for M = 2 cannot be reconciled so a2 = 0. The 
symmetry of the underlying tiling then implies that 
the H'-T polynomial equation (1) has the form 

a 3 ( p 2 - y 3 p 6 ) R 3 + c e l p 2 R + a o = O ,  (33) 

where p~ and P2 are given by (C9) (for n = 6) and, 
from equations (C4) - (C5) ,  I-Ii2=l (to - toi) = 
p2_ yap6, y3 < 0. Since a segment of the real axis is 
the image of a plane line of curvature, (14) implies 
that o~3, o~1, o~ o are real. 

By virtue of its hexagonal symmetry, the H'-T sur- 
face possesses a single degree of freedom, manifested 
in the normal vector of the flat point on the Fliichen- 
stiick. The one-parameter IPMS family defined by 
this variable 3'3 is given by (33) in conjunction with 
an additional homogeneous relation coupling the 
coefficients aM (in terms of 73)- This relation is again 
furnished by analysis of the polynomial discriminant. 

Fig. 2. Projection of  the Schwarz case 1 n = 6 tiling, the shaded 
subunit of  which represents the Gauss-map image of  the H'-T 
surface Fliichenstiick. The Fliichenstiick boundary consists of  five 
plane lines of  curvature (one containing a first-order fiat point) 
meeting orthogonally, so all edges of the image are 'p ' - type 
segments. 
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Consider the nature of the polygonal tessellation 
of the Riemann surface above the set of six 7r/2 
vertices w = exp (im,a'/3) of the Schwarz tiling. Each 
such point is covered once by the junction of four 
polygons with zr/2 vertices situated there and twice 
by pairs of polygons sharing the common unit-circle 
edge. The latter two coverings, related by reflection 
in the ray arg to = rnrr/3, thus represent a degeneracy 
and bear identical Weierstrass-function values there. 
Equivalently, the discriminant of the polynomial 
equation (33) vanishes at these special points. Evalu- 
ation of the cubic discriminant formula in (25) then 
implies 

4a  3 + 27(4-"y3)a2a3 = 0 ,  (34) 

which supplies the required homogeneous relation. 
With (33) and (34) combined, the Weierstrass func- 
tion of the H'-T surface is thus given by 

(4-y3)-l(p2-y3p6)R3-3p~R±2=O: y s < 0  (35) 

[pl and P2 are those in (C9) for n = 6 ] .  Here, + 
represents the right- and left-handed members of the 
enantiomorphic pair of H'-T surfaces. The explicit 
expression for the triple-valued function R(to) is 
readily obtained from (35) by use of the depressed 
cubic root formula. 

( c) The PT surface 

This surface of Koch & Fischer (1989) was dis- 
covered empirically by attaching two spouts to each 
catenoid-like surface patch comprising the oPb sur- 
face [as illustrated in Fig. 12 of Fischer & Koch 
(1990)]. Since the PT genus g = 5, the Riemann sur- 
face is four-sheeted, constructed from two identical 
copies of the double covering tessellated by the 
Gauss-map image of the Fliichenstiick, given with 
respect to the Schwarz case 1 n = 2 tiling in Fig. 3. 

Fig. 3. The projected Gauss-map image of the PT surface Fliichen- 
stiick, displayed with respect to the Schwarz case 1 n = 2 tiling. 
The boundary is constructed from six perpendicularly intersect- 
ing segments - four plane lines of curvature 'p' and a pair of  
linear asymptotes '/'. 

Again, the two identical copies, resulting from the 
presence of on-surface inversion centres (at the first- 
order branch points where plane line of curvature 
and linear asymptotes intersect perpendicularly), 
bear equal and opposite Weierstrass-function values 
R (to) for each to, implying that the quartic polynomial 
equation (1) is now quadratic in R 2. The underlying 
triangle edges along the real axis and the unit circle 
coincide with an identical pair of polygon edges 
pinned at a first-order branch point on two sheets 
and with a second identical pair of unbranched poly- 
gon edges on the remaining two sheets. The segments 
along the imaginary axis coincide with two pairs of 
identical polygons with boundaries wrapping around 
the branch point (pinning a sheet of each pair) and 
the two coverings related by imaginary-axis reflection. 

The set of 12 flat-point normal-vector images com- 
{toi}i=l = {exp [i(mTr+ 0)]}, where O< 0 < -rr/2, prise a 

{wi}8=s = {{A, 1/A} exp (im~r)} 

and 

{toi} J~9 = {{B, 1/B} exp [ i(2m + 1) ~r/2]}, 

where 0 < A, B < 1. The constraints on the coefficient 
polynomials aM(to), M =4,  2, 0, are now 

q4i = 1, q2i = 0, i -- 1 , . . . ,  8, 

q 4 i = 2 ,  q2i >- 1, i = 9 , . . . ,  12, 

deg/)2 + 4q2,9 = 8. 

This implies that the form of the PT polynomial 
equation (1) is 

a 4 ( p 2  y~p2)(p2_ T2Pl  2) ( p 2  ,y3p2)2R4 

+a2(pZ~-yop2)(p~-y3p~)R2+o~o=O, (36) 

where p~ and P2 are again defined by (C9) (for n = 2), 
Yo is some real number and the parameters Yt, y2, 
Y3 are the degrees of freedom in the symmetric forms 
representing the branch-point polynomials of the 
three edge types in Fig. 3: 

4 
H (to-toi)=p2-ylp~, O < y l < 4 ;  
i=1 

8 
H (to-to,)=P22-V2p2, V2>4; 
i=5 

and 

12 

H (w-wi)=p~-y3p~, ~/3 < 0. 
i=9 

Furthermore, the coefficients o~4, o~ 2 and ao are all 
real since a segment of the real axis is a plane-line-of- 
curvature image. 

As the PT surface is orthorhombic, it is defined (up 
to a uniform dilation) by a two-parameter family. 
Now (36) contains the real parameters a4, a2, So 
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(two of which are arbitrary) and 7o, 71, 72, 73. Thus 
the PT family corresponds to a subclass of this general 
equation obtained via the imposition of three addi- 
tional constraints. 

From consideration of Fig. 3, at the branch points 
{o9~}129 and the points +i, the shaded polygon unit 
subtends angles (of 27r and 7r, respectively) double 
that of the underlying Schwarz tiling. Consequently, 
the two pairs of function values on the Riemann 
surface above these sites must coincide, that is, the 
discriminant of the polynomial equation (36) must 
vanish for p2_  ,y3p2 = 0 and p22 = 0. Substitution into 
the familiar quadratic discriminant formula (25) then 
supplies the two relations 

2 2 Y0a2 - 4y, ~/2o~0a4 = 0 ,  (37) 

70(70-7 , )  ( y o - 7 2 ) -  ( 'y~-7 , 'Y2)(70-73)= O. (38) 

Owing to this quadratic nature, (36) may then be 
simply solved to give 

R = +{ [_ (p2_  7opZl) + (1 - 72/'>,172) '/2 

Xpz(p22 - 73 p2),/2][ ( p22 _ 7, p2) 

x ( p ~  2 2 ,}i/2, - 72P, ) (P2-  73P~)]- (39) 

subject to the supplementary relation (38). 
As such, the Weierstrass function contains the three 

branch-point variables 7,, 72, 73 and thus generates 
a three-parameter surface family. In this example, 
discriminant conditions alone are insufficient to 
specify completely the true IPMS family. The reason 
is apparent from the form of the IPMS fundamental 
unit (Fischer & Koch, 1990). The three-parameter 
description refers to the generic noncrystallographic 
case in which the length of the protruding spout-like 
attachment is arbitrary. The two-parameter PT surface 
is the special case for which the spout length is half 
that of the corresponding edges of the rectangles 
spanned by the catenoid. This additional constraint 
is formulated via substitution of the Weierstrass func- 
tion into the representation (I1) and relating the pair 
of path integrals defining the two lengths (the details 
of which are not given here). This example illustrates 
the more complicated parametrizations necessitating 
introduction of additional global constraints to which 
the Gauss map is insensitive - specifically, the require- 
ment that continuation of the fundamental surface 
unit gives rise to a crystallographic IPMS. 

(d) The pCLP and VAL surfaces 

The list of regular-class solutions in paper II con- 
tained a new (non-crystallographic) pentagonal sur- 
face and a new orthorhombic (non-self-intersecting) 
IPMS, denoted pCLP and VAL, respectively, the 
Fliichenstiick of which are illustrated in Figs. 6(b) 
and 17(b) of paper II. In both cases, these 'regular' 

surfaces (which are precisely self-adjoint) are special 
members of a generic 'irregular' surface family. For 
the former case, the restriction of regularity demands 
that the surface-normal vector at the first-order fiat 
point subtends an angle of 7r/5 to both edges of the 
bounding pentagonal prism base meeting there. Con- 
sequently, the ratio of the prism dimensions is restric- 
ted to a particular value. Variation of this fiat-point 
normal vector then produces the generic one-param- 
eter pCLP surface family, corresponding to an 
arbitrary stretching of the bounding prism in the 
vertical direction. In the VAL case, the first-order 
flat-point normal vectors of the 'regular' surface are 
constrained to be vertical and, accordingly, only two 
of the three orthorhombic bounding unit dimensions 
are independently specifiable. Removal of this con- 
straint then produces the general two-parameter VAL 
IPMS family. 

The Gauss-map images of these 'irregular' Fliichen- 
stiicke are represented in Figs. 4 and 5, again with 
reference to the Schwarz case 1 n = 5 and n = 2 under- 
lying tilings of their 'regular' counterparts in Figs. 
6(a) and 17(a) of paper II, respectively. Note that 
all topological and symmetry properties of the 'regu- 
lar' surfaces are retained in this (merely mathemati- 
cal) generalization. Again, this pair of genus 5 
surfaces possess on-surface inversion centres, so the 
defining polynomial equations are quadratic in R 2. 
The derivations of the forms of these two equations 
are straightforward and hence are omitted here. The 
single supplementary homogeneous relation in the 
(real) constant coefficients is provided by the dis- 
criminant, which is zero at the underlying tiling 
vertices oJ = exp [i(2m + 1)7r/5] and o) = 0, oo, respec- 
tively, in two cases. 

! 

Fig. 4. Gauss-map image of  the pCLP Iqiichenstiick projected with 
respect to the Schwarz case 1 n = 5 tiling. The boundary consists 
of  a pair of perpendicularly intersecting plane lines of  curvature 
'p' and linear asymptotes '/ ' , meeting orthogonally at a first-order 
flat point and subtending an angle of  ~r/10 at a third-order flat 
point. 
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The polynomial equation for the generic pCLP 
surface is found to be 

to3[(to5 + 1 )2 -4  cos 2 (50 /2) toS]R 4 

+4 c o s  ( 5 0 / 2 ) t o 4 R  2 - 1 = O, (40) 

where 0 < 0-< 7r/5 is the argument of the first-order 
flat-point normal-vector image in Fig. 4. The equation 
for the generic VAL IPMS is 

[(o92+ 1 )2 -4  cos 2 (O)toz]3{(to2+ 1) 2 

-211 + ½(A2 + 1/A2)]to2}R 4 

+2[(to 2 + 1 )2 _ 4 cos 2 (0)to2]ZR 2 + 1 = O, (41) 

where now 0 < 0 < rr/2 is the argument of the third- 
order branch point and 0 < A < 1 is the value of the 
first-order branch point inside the unit circle shown 
in Fig. 5. In both cases, + denotes, respectively, the 
surface or the adjoint surface, which together define 
a continuous self-adjoint family. The one exactly 
self-adjoint member of this family is the regular-class 
surface (given in rows 6 and 17 of Table II1), corres- 
ponding to the value 0 = 7r/5 for the pCLP surface 
and the singular limit A ~ 0 of the VAL surface, as 
expected. 

the surface is invariant on clockwise rotation of an 
angle ~0' about the z axis provided the representation 
(I1) possesses the property (II11), which implies that 
the branches of the Weierstrass function pinned at 
the branch point b~j satisfy the functional relation 
(1112). This is the case only if the asymptotic form 
(7) satisfies this equation locally, which yields the 
necessary condition on the rotation angle q~' of 

e x p { i ~ o ' [ 2 - a o / ( b u +  1)]}= 1. (A1) 

Recall that, in the Gauss map, the angle of intersec- 
tion of any two geodesics on the surface at the flat 
point is increased by the factor bij + 1 and the sense 
of rotation is reversed. Thus, the angle ~o', common 
to the surface and its Gauss-map image in ( I I l l ) ,  
must satisfy q ) ' / ( b i j + l )  = - q ~ ' m o d 2 r r  or, equi- 
valently, 

e x p [ i q ~ ' ( b o + 2 ) / ( b o +  1)]= 1. (A2) 

On elimination of ~o' from the above pair of 
equations, the inequality a u <_ b o then implies 

a u = b o. (A3) 

The author thanks Dr S. T. Hyde and Dr S. Lidin 
for their helpful criticisms. 

A P P E N D I X  A 

Compactness of the IPMS fundamental unit implies 
that any singularity of R( to)  at to = to~ is integrable 
and hence a~j < b~j. If the surface is reoriented such 
that the normal vector of the flat point of interest 
coincides with the negative z axis and thus with toi = 0, 

Fig. 5. Image of the VAL Fliichenstiick projected with respect to 
the Schwarz case 1 n = 2 tiling. The Fliichenstiick is delimited 
by two pairs of perpendicularly intersecting plane lines of cur- 
vature 'p' and linear asymptotes '/', alternately joined 
(orthogonally) at first- and third-order fiat points. 

A P P E N D I X  B 

Combination of (8) and (9) gives 

a M ( W ) R  M - aMPM(toi)flMiy M 

X (( .0 - -  O ) i )  q M i - M b J ( b q + l ) ,  0,) "') (.!) i " 

tiM, = f l  (Wi--wk)  qMk (B1) 
k = l  

Recall that the bu+ 1 branches of the Weierstrass 
function pinned at a branch point of order b o above 
w~ correspond locally to the values of %2 given by the 
bq + 1 roots of a complex number r u [in (7)]. As there 
are N u such branch points over w~, substitution of 
(B 1) into (1) must yield, to leading order in w - wi, 

b,+l a polynomial of degree N O in Y0' . The sth term in 
(1) defines the Riemann-surface branch points and, 
in combination with remaining terms, specifies the 
nature of the branch-point structure. Hence, we 
require that, to leading asymptotic order, the M = s 
and M = s - N q ( b o + l  ) terms in (1) are of equal 
order, with the N o -  1 intermediate terms in the 
equivalence class modulo b u + l  given by M =  
s - m ( b i j + l ) ,  m - - l , . . . ,  N o - 1  , of order no lower 
than this, and the remaining s - N / j  terms of strictly 
higher order. This determines the value of qs_N,,<b0÷ ~),i 
in terms of the quantity qs~ defined in (10), 

qs_No<b,/+l), i d- Nub q = qs~, (B2) 

and imposes the inequalities 

qs-,,,(%+l).~+ mbq >- q~, m = 1 , . . . ,  N / j -  1 (B3) 
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on the intermediate q~, values and the strict 
inequalities 

qM~+(s -M)bu / (bo+ 1)> q~ (B4) 

on the remaining s - N o values of qM,. The N o values 
- (%+~) (which are strictly non-zero) are then given, of 70' 

on combination of (1) and (B1), by the polynomial 
equation 

N O 

Y'.' a~_,,,(%+,)P~_.,(%+,)(toi)fl~_,,,(%+,)., 
m = O  

x (y ; j~ , ,+ ' ) ) "  = 0, (BS)  

where the prime on the summation indicates the 
inclusion of only those intermediate terms for which 
the condition (B3) is a strict equality. (This conven-. 
tion will be used throughout Appendix B). 

In the special case j = 0, the branch-point order is 
zero and, on substitution of b,o=0 into (8), the 
asymptotic form reduces to 

R(to)--y,o, to-+to, (B6) 

on an unbranched sheet above to,. By analogy with 
(B1), we have 

a~ ( to ) R M "" a M P M  ( toi) f lMiT i~ 

x( to- to i )  q~', to-+toi, (B7) 

which, when combined with (1), must produce, to 
leading (namely zeroth) order in to - w~, a polynomial 
of degree N~o for the function values %0 on the N~o 
such unbranched sheets. Thus, since the zeroth term 
in the polynomial equation (1) is constant, we require 
that the term M = N,0 in (1) is likewise of order zero, 
with the intermediate terms M = 1 , . . . ,  N~o- 1 of 
non-negative order and the remaining terms of strictly 
positive order, 

qN,o.' = qoi = O, (B8) 

qMi-->O, M = I , . . . , N , o - 1 ,  (B9) 

qMe>O, M = N,o+ I , . . . , s .  (B10) 

Then, as above, the N,o values of %6 are specified by 
the polynomial equation 

~o 
E' aMP~(to,)flM, Y,~ =0. (B l l )  

M = 0  

With the assumption, without loss of generality, 
that each flat-point normal-vector image to~ is finite 
and with the corresponding sequence .{qM,}~=O thus 
constrained by the above conditions, the point at 
infinity in the closed complex plane is not a flat-point 
image. Thus, the s sheets of the Riemann surface over 

are unbranched and, from (I2), the Weierstrass 
function has the asymptotic form (I5), 

R(to) ~ ~/tooto -4, to -+ ~.  (B12) 

The implications of the requirement that the poly- 

nomial equation (1) yields s values of y~ in the limit 
to -+ ~ are discussed in the Appendix of paper I. In 
particular, this imposes the constraints 

q~i = 4s, (B13) 
i = 1  

d e g P M + ~  qM,--<4M, M = l , . . . , s - 1  (B14) 
' = 1  

(where deg P~ is the degree of P~) and supplies the 
polynomial equation 

s 

M = O  

for the s values of Too. Equation (B13) is satisfied 
identically by virtue of (6) and (10), leaving the 
non-trivial constraint (B14) relating the sequence 
{qMi}in-_l to deg P M .  

For IPMS of certain symmetries, it is convenient 
to choose a coordinate orientation such that a flat 
point is mapped to the point at infinity in the closed 
complex plane. If to~ =o0 then (8)-(10) and (B1)-  
(B l l )  still apply to the set of finite branch points 

n - - I  {to~},=~ [with the product range in (9) and (B1) now 
restricted to 1-< i<_ n -  1], while the conditions 
(B12)-(B15) are replaced by the following con- 
straints. If the asymptotic form 

R(to) --- 'Ynjto-4+bnJ/(bnj+l), tO -+ O0 (B16) 

is inserted into (1), consistency with the branch-point 
structure under to, demands that, for j = 1, . . . ,  n,, 

n - 1  

deg Ps_N,,j(b,,j+l) d- ~ qs-N,,,(b,,~+l),i 
i = 1  

?1--1 

+4N,,j(b,,j+ l)-N,, jb,o= E q~,, (B17) 
/ = 1  

n - - I  

deg P~-,,~b.j+l)+ ~ q~_,,,~b,,j+~).~+4rn(b,,j+ 1)-- rnb,,j 
i = 1  

n - - I  

- ~] q~,, m = l , . . . , N , j - 1 ,  ( B 1 8 )  
i = 1  

and 

n - I  

deg PM + ~ qM, + 4(s - M) 
i = 1  

n - - 1  

- ( s - M ) b , , J ( b , o + l ) <  • q,,, (B19) 
i = 1  

where the last condition applies to the remaining 
s-N,,~ values of M. Accordingly, the N,,~ values of 
,/byj+l are specified by the polynomial equation 

N .  

y"~ ~_m~b,,,+,~(~;)b°J+'~)m = 0. (B20) 
m = 0  
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On the N,,o unbranched sheets under to,,, the Weier- 
strass-function asymptotic form, given by substituting 
j = 0  and b,,j= b ,o=0 into (B16), yields the con- 
straints 

rl--1 

deg PN.o + Y~ qN.o.~=4N,,o, (B21) 
i=1 

tl--1 
d e g P ~ +  ~ q~<-4M, M = I , . . . , N , o - 1 ,  (B22) 

i=1 

n - I  
degPM+ ~ qM~<4M, m = N , , o + l , . . . , s  (B23) 

i=1 

and the polynomial equation 
Nno 

OI.M~/nO = O. 
M=O 

(B24) 

A P P E N D I X  C 

With the vertices of the Schwarz triangle with angles 
AFt , denoted by uj, the opposite edges by ej and the 
single face by f, the numbers of each in the tessellation 
are given by (I34). For convenience, a coordinate 
orientation is chosen such that, in projection, a vertex 
vl resides at infinity and an edge e2 lies along a 
real-axis segment. The polynomials 

P~- -P j=  [I (w-tojq), j = 1 , 2 , 3  (C1) 
q=l  

oJjq ~oo 

(with zeros the finite images tojq of the tessellation 
vertices of type j and degree Vj counted with the 
suppressed zero at infinity), are the lowest-degree 
symmetric polynomials of the tiling. Furthermore, the 
set of polynomials {p~/Xj(to)}3=~ is linearly dependent 
- in particular there exists a real constant y such that 

pl3/~',= p~/~'2- ypl/~'1. (C2) 

The polynomial forms 

pe, = ~ ( to - toe , ,q ) ,  j =  1 , 2 , 3 ,  ( C 3 )  
q=l  

generated by the set of images toe: of a general point 
on the triangle edge ej, define symmetric polynomial 
one-parameter families of common degree Ej = E. 
Equivalently, these may be expressed as 

pe =p~/X2_y~p~/A,, (C4) 

where the three edge types ej correspond to the ranges 
of the real parameter yj 

73<0, 0 < y l < y  and y2>7 if y > 0  (C5) 

(with the signs of 3' and the yj reversed if 3' < 0). The 
maximal-degree basic symmetric form is the two- 

parameter polynomial family 

F 

P: = I-I (to-toyq), (C6) 
q=l  

with zeros the tessellation images to:q of a general 
point in the triangle interior f. It may likewise be 
expressed in terms of the vertex polynomials as 

py=(p~/:~-yypV:',)(p~/~-~/yp~J ~) (C7) 

for some complex parameter y:. 
In particular, for the Schwarz case 4 tessellation 

(the underlying tiling shown in projection in Fig. 1), 
the vertex angles are (hi, h2, , ~ 3 ) 7 " / ' = ( 1 , 1 , ½ )  7"g, for 
which the sets of 6, 8 and 12 tessellation vertex images 
are 

{0, oo, exp (imzr/2)}, 

{[(31/2 + 1)/21/2] exp (i~-/4) exp (imzr/2)} 

and 

{{21/2+ 1, exp (i~-/4)} exp (imTr/2)}, 

respectively (where m ~ Z), in the chosen orientation. 
Hence, from (C1), the h~ and h2 vertex polynomials 
(in terms of which all other symmetric forms can be 
expressed) are 

p~ = 0,)(0) 4 -  1), Pz = °98+ 14w4+ 1, (C8) 

and the value of 3' in (C2) is 108. In the Schwarz 
case 1 family with vertex angles (A1,A2, A3)Tr= 
(~, ½, ½)Tr for n -> 2 (for example, n = 6 subcase is the 
underlying tiling projected in Fig. 2), the sets of 2, n 
and n images of each vertex type are {0, oo}, 
{exp (iTr/n) exp (i2mTr/n)} and {exp (i2rnTr/n)}, 
respectively. The h l and h2 vertex polynomials are 
then 

p l = t o ,  p 2 =  t o ' +  1 (C9) 

and the corresponding 3' value is now 4. 
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